Инновационные технологии в электроэнергетике. «Глобальные изменения в энергетике неизбежны»: какие решения нужны в этой сфере

Современные технологии в различных отраслях и сферах постоянно развиваются путем внедрения креативных инноваций. Не исключением является и энергетическая область – инновации в энергетике стимулируют развитие бизнеса, автомобильной, нефтегазовой и прочих индустрий, а также существенно повышают качество жизни населения. Инновации, или нововведения, представляют собой опробование и использование технологических или иных других новинок, направленных на качественное развитие процессов жизнедеятельности, промышленности и т.д.

Наиболее интересные и современные инновации

Инновации энергетического плана внедряются различными странами в самых активно используемых отраслях, а также заимствуются друг у друга. Одними из самых значимых инноваций можно назвать:

  • Технология фрекинга с использованием ударной волны
  • Новейшие технологии добычи нефти
  • Использование бактерий для устранений разливов нефти
  • Применение биотоплива для автомобилей

Говоря о первой инновации, стоит отметить, что ударная волна является самым результативным способом для рассеивания энергии. Ее можно успешно применять на глубине сланцевых пластов до тысячи или полутора тысяч метров. Индийская компания, специализирующаяся на исследовании технологии фрекинга, предложила использовать ударную волну в качестве более простой и выгодной по стоимости технологии для разрыва пласта, в сравнении с гидроразрывом. Подобная энергетическая инновация способна существенным образом изменить нефтегазовую промышленность, поскольку полностью отпадет необходимость использования воды в данных работах. Это позволит заметно уменьшить уровень загрязнения воды, ведь для гидроразрыва требуется не менее 4 млн галлонов на одну скважину.

Вторая интересная инновация в энергетике – это усовершенствованный способ нефтедобычи. Так называемый метод повышения нефтеотдачи подразумевает третичную обработку пластов, чтобы извлекать как можно больше продукта. Основывается такая технология на применении углекислого газа, повышающего скорость потока нефти и снижающего ее вязкость.

Что касается использования бактерий для устранения разливов нефти, данная инновация базируется на применении двух групп бактерий – обе они обладают свойством окислять нефть и таким образом сокращать масштаб разлива, либо заранее предотвращать его. На данный момент специалисты занимаются изучением рода бактерий Oleispira antartica, чтобы выяснить способность к существованию в низких температурах. Эта инновация позволит разработать эффективную стратегию по сохранению экологии и предотвращению нефтяных загрязнений.

И наконец, еще одна инновация – это автомобильное биотопливо, получаемое из клеток растений и животных. Биодизель и этан (самые популярные виды биотоплива) помогут стабилизировать ситуацию с ценами на мировом рынке и снизят расходы на НИОКР.

Взгляд в будущее: какие инновации будут использоваться

Помимо вышеперечисленных, инновации в энергетике включают в себя и другие достижения, часть из которых уже достаточно широко используется. Так например, это ветроэнергетика – использование ветровой энергии для работы двигателей разного типа. Подобные системы можно встретить во многих заграничных странах, у нас эта технология тоже находит свое применение.

Не стоит обделять вниманием и тепловые насосы, их можно по праву назвать будущим энергетики. Они позволят заметно улучшить экологическую ситуацию за счет производства тепловой энергии, попутно существенно повышая уровень жизни населения, поскольку теплоснабжение является одним из ключевых секторов энергетики. Принцип действия тепловых насосов основан на трансформации низкотемпературной возобновляемой энергии, он известен более века, но активное применение находит только сейчас.

Теплоэнергетические современные установки – инновация промышленного масштаба

В 2004 году стартовало изучение такой инновации, как применение сжиженных углеводородных газов (СУГ) для теплоэнергетических установок. Использование СУГ вместо дизельного топлива позволит улучшить экологическую безопасность. Кроме того, данное топливо обладает высокими потребительскими свойствами и более низкой стоимостью в сравнении с другими видами топлива. Сегодня подобная инновация уже прошла многочисленные испытания и отличилась надежностью и эффективностью.

Светодиодные лампы – высокое и доступное качество

Последней энергетической новинкой можно назвать и светодиодные лампы. Они появились на рынке сравнительно недавно, но уже успели завоевать достаточно широкую долю. В сравнении с люминесцентными лампами и светильниками светодиодные варианты более практичны и экономичны, они обладают длительным эксплуатационным сроком. Практичный материал позволяет добиться снижения стоимости, что очень важно для широкого потребительского круга. Подобная новинка сейчас продолжает набирать популярность, особо заметен рост офисных светодиодных светильников и приборов для освещения магазинов.

Преимущества современных осмотических электростанций

Оригинальной инновацией мира энергетики является осмотическая станция, которая базируется на использовании морской соленой воды. Осмос – это физический эффект, происходящий в стволах деревьев и предназначенный для переноса питательных соков в зону, где происходит фотосинтез. Ученые-специалисты предложили задействовать подобный процесс для взаимодействия с водой. Если в один сосуд с перегородкой разместить пресную и соленую воду, то разница давлений заставить заработать процесс осмоса. Подобную реакцию можно использовать в работе гидроэлектростанций.

Интересная задумка требует доработки – в частности, пока ученые не могут решить вопрос с подбором наиболее подходящих мембран для осмотических станций. Если же это удастся сделать, то новинка прочно займет место в сфере гидроэнергетики и позволит заметно увеличить объемы энерговыработки, стабильно обеспечивая постоянно растущее население по всему миру.

Резервы такого процесса, как осмос, можно назвать достаточно впечатляющими. Эта инновация поможет с легкостью задействовать в человеческой жизнедеятельности энергию глубин океана, поскольку степень солености воды во многом зависит от температуры, а она изменяется с уровнем глубины. В связи с этим технология позволит избежать привязки строительства гидроэлектростанций к устьям рек, их можно будет размещать прямо в акваториях океанов. Поэтому сегодня ученые активно занимаются разработкой данной инновации для ее скорейшего внедрения.

От того, как активно внедряются инновации в энергетике и прочих отраслях человеческой жизнедеятельности, зависит успешное и полноценное развитие условия существования, повышение качества жизни и возможность экономить на ежедневных потребностях. Именно по этим причинам специалисты всего мира каждый день изучают новые разработки и пробуют их в практических условиях, чтобы найти действительно выгодные и полезные инновации.

Электроэнергия играет важную роль в жизни и экономике каждой страны. Многие страны мира стараются эффективно получать, передавать и использовать такую энергию, и помощь в этом им окажут в электроэнергетике.

Инновации и их эффективность в электроэнергетике

Индустрия и промышленность, связанные с электроэнергетикой, имеют следующие особенности:

  • выработка ресурса основных частей и узлов электрооборудования происходит за 20, 30 и более лет;
  • для обновления или замены оборудования необходимо вложить большие средства;
  • вложенные средства окупаются долго.

Затраты предприятий, к которым относятся компании энергетического сектора, на научно-исследовательские работы невысоки. Тем важнее понять, что развитие отрасли и новые технологии в энергетике возможны за счет применения инновационных методов работы.

Наиболее интересные и современные инновации в энергетике

В атмосфере накапливается электричество, один из вариантов его использования — захват электрической энергии молний. Это обещающая технология, но пока еще мало разработанная.

Более продвинутая техника — плазменные генераторы, вариант магнитогидродинамического устройства. Опытно-промышленные установки появились в XX веке, с тех пор ведутся работы по их усовершенствованию и доработке.

Проблему получения энергии решали за счёт наращивания мощностей, действующих технических средств. Уровень технологий не позволял эффективно использовать энергетические запасы. Наблюдались потери, К.П.Д. использования даров природы был очень низким. Ещё в прошлом веке возникла острая необходимость внедрения высокоэффективных методов использования нефти, угля, воды, обеспечивающая внедрение инноваций.

Запасы природных ископаемых планеты ограничены. Они кончаются. Получать энергию из оставшейся части, станет сложнее. Поэтому вместе с улучшением технологий, обеспечивающих старые способы энергетик, идёт постоянный поиск альтернативных способов решения проблемы, внедрения качественных инноваций.

Мировые инновации 2018

Достижения в области энергетик наблюдаются в разных странах, помогая развитию техники, бизнеса. Они решают конкретные задачи, входящие в следующие направления инноваций мира:

  • Создание высокопроизводительных, безопасных производств выпуска конкретных объёмов энергии.
  • Анализ и расчет разумных (минимальных) инноваций.
  • Развитие других способов передачи энергии на расстояния с минимальными потерями.
  • Создание экологической безопасности для живых организмов.
  • Внедрение единой энергосистемы с умной цифровой технологией управления.

В ближайшее время полного отказа от углеводородных энергетик не планируется, но поиск альтернативных источников, их внедрение в жизнь идёт полным ходом.

Внимание. По прогнозам специалистов новые технологии уже в 2020 году повысят степень нетрадиционных методов в энергетике до 15 %.

Объём мировых инноваций формируется за счёт государственных вложений. Частные компании тоже финансируют современные разработки. Корпорация Google предложила проект получения энергии за счет оригинальной конструкции змея-аэроплана. Мощность одного устройства составляет 600 кВт. Оно позволяет удовлетворить потребности стандартного многоквартирного дома. Или предложения специалистов Японской компании по использованию новейших способов беспроводной передачи энергии. Даже фантастические идеи реализуются, принесут прибыль, когда будут освоены капитальные инновации.

Направление

Ведутся разработки в многочисленных направлениях оптимальных энергетических инноваций. Денежные вложения, оговариваемые многочисленными программами стран, предлагается направлять на улучшение технологических процессов старых способов добычи энергии и внедрением в жизнь новых достижений науки. Главными направлениями считаются следующие предложения:

  1. Использование нефти. Цена на нефть является главной движущей силой развития промышленности. Постоянно идёт поиск новых технологий, обеспечивающих повышение процента добычи нефти из старых и новых скважин. Важно отметить , что благодаря инновациям внедрён новый принцип третичной обработки нефтеносных пластов, делающий скважины рентабельными. Должное внимание уделяется вопросам экологии.
  2. Гидроэлектростанции. Природные условия определяют решение использования старинных способов энергетик. Для возведения гидроэлектростанций, реконструкции старых объектов применяются современные материалы, неожиданные конструктивные решения. Используя осмос эффект, предлагается возводить их в открытом море с солёной водой.
  3. Устройства угольной промышленности. Старинный вид топлива добывается с помощью современных лазерных комбайнов. Рядом с шахтами формируются экологически безопасные, используемые в хозяйстве зоны.
  4. Создание устройств на использовании излучении солнца. Внедрение современных технологий приручения солнечной радиации полезно для районов с достаточным количеством солнечных дней в году. Всё чаще можно встретить частные владения, тепличные комплексы, оборудованные собственными устройствами накопления запасов солнечной радиации.
  5. Использование силы ветра. Энергетика, созданная на основе силы ветра, стала привычным видом формирования запасов мощности в разных странах. Новейшие разработки постоянно внедряются при создании новых типов двигателей, систем накопления, передачи.
  6. Создание осмостанций. В их основе лежит пополнение запасов энергетики за счёт разницы давлений солёной и пресной воды (осмос эффект). Вращающиеся турбины вырабатывают электричество. Проведённые финансовые расчёты показали, что затраты по сравнению с возведением гидроэлектростанций уменьшаются.

Инициатор

Потребности энергетик ежегодно увеличиваются. Каждая страна проводит тщательный анализ необходимой мощности, зная основные направления в развитии промышленности, научных планах, бытовом использовании. Инициаторами инноваций энергетик являются специалисты конкретной страны, предлагающие обоснованные программы. В странах Европы, Азии активно вкладываются деньги в альтернативные виды получения энергии ветра, солнца. Это Германия, Швеция, Италия, Испания. С появлением современного оборудования возросло количество солнечных станций на территории Америки. Уменьшилась их стоимость. Половину рынка объёмов солнечной мощности используют в Китае, Японии. Продолжает расти использование геотермальных источников в Ирландии, Исландии. Инновации в разработку новых видов тепловых насосов инициировали внедрение геотермальной силы на территориях России, Белоруссии, Украины. По инициативе Министерства энергетики России разработана специальная дорожная карта «Энерджтнет», формирующая рынок электроэнергии будущего. Усилиями специалистов Интер РАО ЕЭС создан фонд «Энергия без границ», предусматривающий модернизацию старых методов энергетик, внедрение альтернативных, более эффективных, экологически безопасных способов.

Краткое описание

Энергетические проблемы повседневной жизни общества требуют разработок и эффективного внедрения альтернативных способов пополнения энергетических запасов. Природные запасы (нефть, газ, уголь) постепенно уменьшаются, становится важным первенство в освоении новых возможностей. Сейчас это следующие инновации в энергетике:

  • Использование ударной силы волны (фрекинг). Технология фрекинга называют перспективным будущим нефтегазовой индустрии, открывающей безграничные перспективы для сланцевой революции добычи энергии земли. Вместо традиционного применения, искусственно созданных потоков воды, для разрыва пласта на глубинах до 1500 м используется ударная волна. Главным разработчиком технологии назначена компания Super Wave Technology, расположенная в Индии.
  • Замена бензина биотопливом. Чаще всего в качестве биотоплива используется этанол, биодизель. Их стоимость определяется текущим значением цены на нефть. Поиск новых видов биотоплива проводится в разработках НИОКР разных стран. В Техасском университете создан новый вид дрожжей, позволяющий выпускать дешёвый вид биотоплива, как источника энергии, получаемого из живых организмов (растений, животных). Их не менее важным достоинством является способность уничтожать вредоносные загрязнения нефтью, химическими соединениями. Сейчас учёные изучают свойства бактерии Oleispira antartica для использования её в условиях низких температур Заполярья.
  • Дальнейшее развитие атомных энергетик, использование физических свойств водорода, мечты о новых видах энергии, полученных на других планетах.

Бюджет

Планирование объёмов денежных вложений в развитие энергетики стало обязательным в экономике любой страны. В первую очередь это определяется выбранным направлением инноваций, оценкой необходимых денежных сумм. В США планируется увеличить средства на развитие крупнейшего солнечного проекта в штате Вирджиния. Два объекта (Pleinmont I и II), входящие в состав солнечной станции мощностью 500 МВт, будут оснащены самыми современными солнечными панелями, устройствами хранения силовых запасов энергетик. Прибыль от продажи такой энергии быстро окупит все затраты. В ближайшем будущем США увеличит долю энергии из возобновляемых источников с 13 % до 18%.

По уровню планируемых на развитие инноваций лидируют Китай, Индия, Англия, Италия, Германия.

Интересно. Оценка МВФ на 2018 год государственных субсидий для инноваций в энергетику даёт величину свыше 10 млн. долларов в минуту.

В России отсутствует системный подход поддержки проекта «Энергоэффективность». Общие денежные вложения государства упали почти во много раз (с 7,1 млрд. руб. до 140 млн. руб. на 2016 год). Но при этом наблюдается рост заводов-производителей газового оборудования, приборов обработки воды, КИПиА. Одним из поставщиков подобного оборудования является компания ООО «РОСС» ross.com.ru/difmanometr-dsp-4sg-m1 (г. Белгород Тел. 4722 40-00-70). Компания предоставляет гарантию качества и полный комплект документов предоставляемых заводами-изготовителями.

Особенности развития энергетики в России

Наличие разнообразных климатических условий на большой территории России требует особенного отношения к анализу возможных способов производства энергии. Только на отопление жилища ежегодно надо потратить миллиарды, не говоря о проблемах промышленности, сельского хозяйства, содержании армейского оборудования. Российская энергетика находит решение в развитии старых способов и использование любых современных инноваций в области применения технологий, основанных на новых физических принципах получения энергии. Организуются специальные фонды инноваций, открываются НИОКР по созданию новых материалов, необходимых при модернизации плотин, нефтяных вышек, техники для добычи угля. Это сверхстойкие нано структурированные стали, много композиционные защитные покрытия, оригинальные солнечные панели, новейшие системы ветряков, современные тепловые насосы. Разработке подлежат все направления инноваций в технологии получения энергии, повышения эффективности её использования при передаче на большие расстояния, свойственные России. Уникальной разработкой России (в мире отсутствуют аналоги) называют метод петротермальной энергетики (тепловая сила сухих горных пород в земной коре). Разработки ведутся по программе «Термолитэнерго».

В ближайшее время основным направлением получения энергии в России останется нефть. От её цены, объёмов добычи с помощью новейших технологий будет зависеть уровень развития техники, жизни.

Взял в первую очередь для себя.

Новейшие технологии и перспективные направления

На сегодняшний день известны следующие разновидности инновационной энергетики (мы приводим их краткое описание):


  • Установки для нагрева жидкости — вихревые теплогенераторы (существуют и другие названия этих установок). Жидкость прокачивается электронасосом через конструкцию определенным образом соединённых труб и нагревается до 90 градусов. Эти теплогенераторы давно используются для отопления помещений, но общепризнанной теории процессов, приводящих к нагреву жидкости, пока нет. Есть конструкции, в которых в качестве рабочего тела пытаются использовать воздух.

  • «Холодный ядерный синтез». Попытки извлечь ядерную энергию без применения сверхвысоких температур предпринимаются с конца 1980-х годов. Недавно итальянскими инженерами было заявлено, что им такая попытка удалась, правда от наименования холодный ядерный синтез они отказываются. Но суть в том, что в их катализаторе энергии тепло получают в результате слияния ядер химических элементов. Установка готова для практического использования.

  • Магнитомеханический усилитель мощности. По уверению авторов этого изобретения им удаётся использовать магнитное поле Земли для увеличения скорости вращения вала генератора или электромотора. Тем самым увеличивается количество электроэнергии, получаемой от генератора или уменьшается потребление энергии электромотором из сети. Такие устройства находятся на стадии полупромышленных образцов.

  • Индукционные нагреватели. Индукционный нагрев с помощью электричества используется в промышленности давно, но этот процесс удалось усовершенствовать. Теперь индукционный электрокотёл даёт больше тепловой энергии при тех же затратах электроэнергии. Предлагаемый электрокотёл, благодаря усовершенствованию, по эксплуатационным затратам будет на уровне газовых котлов.

  • Двигатели без выброса массы. Лабораторные образцы таких двигателей, не потребляющих топлива, демонстрируются в одном из космических исследовательских институтов (НИИ космических систем). Был проведен эксперимент с таким двигателем на спутнике. Перспективы этого направления пока не ясны.

  • Плазменные генераторы электроэнергии. Эксперименты с различными конструкциями ведутся давно в основном на лабораторном уровне.

  • Напряженные замкнутые контуры. По утверждению энтузиастов этого подхода существуют такие кинематические схемы, реализация которых позволяет извлечь дополнительную энергию. Демонстрировались возможности таких схем в конструкциях мельниц для измельчения отходов полимерных материалов. Затраты энергии на измельчение в этих мельницах меньше, чем в мельницах традиционных конструкций.

  • Энергоустановки на основе динамической сверхпроводимости. Разработчики этих потенциальных генераторов электроэнергии утверждают, что при определённой скорости вращения дисков возникает эффект динамической сверхпроводимости тока, что позволяет генерировать мощные магнитные поля. А уже эти поля можно использовать для генерации электроэнергии. В ходе экспериментов накоплен большой массив информации по необычным физическим эффектам. Есть возможность не только генерировать энергию, но и создать двигатель для транспортных средств. Это направление выглядит одним из самых перспективных в новой энергетике.

  • Атмосферная электроэнергетика , объединяет различные способы и проекты получения накапливаемой в атмосфере электрической энергии. Наиболее очевидный путь состоит в захвате колоссальной энергии молний. Данное направление новой энергетики обладает немалым потенциалом.

Приведенный перечень исследований, направлений и готовых установок не является исчерпывающим. Однако он позволяет сделать вывод, что общество может приступить к осуществлению крупных проектов в инновационной энергетике, чтобы создать и развить принципиально новые технологии генерирования энергии. Благодаря этому будет создано важное условие выхода из тупика, как энергетической отрасли, так и всей экономики.

Крайне сомнительно, что нынешние руководство РАН и правительство России способны разработать целевую комплексную программу НИОКР в области новейших методов получения дешевой энергии на базе научных идей тех ученых и изобретателей, которые не могут до сих пор прорвать блокаду консервативной среды. Российские власти прямо заинтересованы в сохранении энергетического status quo на планете. Борьба начальства РАН с лженаукой обернулась забраковкой актуальных научных работ. Был зарублен «холодный синтез» ; не видно развития других направлений энергетики в рамках официальной науки. Однако остановить прогресс в энергетической сфере невозможно. Его блокировка в России может лишь осложнить судьбу господствующих сырьевых монополий.

7. Радикальные инновации

Современные исследования позволяют выделить несколько изобретений и сфер, способных сыграть важную роль в энергетической революции. Возможно, благодаря таким новшествам привычный мир навсегда уйдет в прошлое.

7.1. Нанопроводниковый аккумулятор

В 2007 году Стэндфордский университет представил новое изобретение. Им оказался нанопроводниковый аккумулятор, вид литий-ионного аккумулятора. Суть изобретения в замене традиционного графитового анода аккумулятора на анод из нержавеющей стали покрытый кремниевым нанопроводником. Благодаря способности кремния удерживать в 10 раз больше лития, чем графит стало возможно создавать значительно большую плотность энергии на аноде. Масса аккумулятора при этом снизилась. Предполагается, что со временем увеличение площади поверхности анода сделает процесс зарядки и разрядки более быстрым. До конца 2012 года ожидается начало коммерческого использования нового аккумулятора.

Появление в продаже более объемных и «быстрых» батарей способно не только облегчить жизнь владельцев переносных компьютеров и мобильных телефонов. Оно может означать начало реального вытеснения двигателя внутреннего сгорания в автодорожном транспорте электромобилями с большим запасом энергии и мощностью. Снижение стоимости производства аккумуляторов нового поколения, а также увеличение срока их жизни (как минимум до нескольких тысяч циклов) расширит поле применения автономных электронных устройств.

7.2. Беспроводная передача электричества

Необходимо различать беспроводную передачу электрических сигналов и электрической энергии. В первом деле человечество добилось уже больших успехов, во втором оно, как может показаться, делает первые шаги. В 2010 году Haier Group удивила мир первым в мире LCD телевизором. В основе разработки лежали исследования по беспроводной передаче энергии и на беспроводном домашнем цифровом интерфейсе (WHDI).

Однако еще в 1893 году Никола Тесла продемонстрировал беспроводное освещение люминесцентными лампами как проект для Колумбовской всемирной выставки в Чикаго. В 1897 году ученый зарегистрировал первый план беспроводной передачи электричества. Но способ, разработанный Тесла, не нашел широкого практического применения, что было, прежде всего, связано с достаточностью для экономического развития уже имеющихся базовых изобретений в электроэнергетике. Консервативную роль сыграли энергетические компании, не проявившие заинтересованности в беспроводной передаче электричества не только в рамках помещения, но и на расстоянии в тысячи километров. Столь же холодно они воспринимали попытки Тесла предложить новые — революционные способы генерации, взамен ранее выдвинутым им же методам. В 1917 году была разрушена принадлежавшая ему Башня Ворденклифа, построенная для проведения опытов по беспроводной передаче больших мощностей.

Начавшие распространяться в наши дни беспроводные зарядные устройства для всевозможных гаджетов демонстрируют возрождение интереса к беспроводной передаче электроэнергии. Перспективы этого направления колоссальны. Не случайно в 2008 году корпорация Intel попыталась воспроизвести опыты Тесла 1894 года, а также группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с 75% КПД. Задачи и успехи современной беспроводной передачи выглядят скромно по сравнению с размахом работ Тесла столетней давности. Однако именно в наши дни кризис новой когда-то электроэнергетики делает работы в направление беспроводной передачи электричества чрезвычайно актуальными и ценными.

7.3. Атмосферная электроэнергетика

В 2010 году бразильский ученый Фернандо Галембекк сделал сенсационное заявление о возможностях получения атмосферного электричества. Согласно разработкам его группы из университета Кампинаш в Сан-Паулу мельчайшие заряды могут собираться из влажного воздуха. Как показали испытания, для сбора зарядов могут применяться определенные металлы, что в перспективе открывает крупные возможности для производства электроэнергии в регионах с влажным климатом. Считается, что совершенствование этой технологии даст человечеству еще один источник возобновляемой энергии.

Разработки бразильских ученых — не единственные попытки получить доступ к электричеству, заключенному в воздушном слое планеты. Существуют проекты летающих станций, занимающихся «ловлей» молний, а также наземных установок того же назначения. В России опытами в данной области занимаются сразу несколько групп, не имея никакой государственной поддержки. Бразильские исследователи стремятся разработать устройство для получения — «вытягивания» — электроэнергии из движущегося влажного воздуха. С этой целью проводятся эксперименты с материалами, что должно помочь выделить наиболее эффективные (более эффективные, чем кварц и фосфат алюминия) для содействия формированию электрического заряда в атмосфере. Однако описанные разработки в области атмосферной электроэнергетики не включают вызова молний — провоцирования грозовых разрядов с целью получения энергии, экспериментально опробованного Николой Тесла еще в конце XIX столетия. Работа в данном направлении может оказаться наиболее перспективной из всей группы исследований атмосферной электроэнергетики.

Критики опытов профессора Галембекка по получению «влажного электричества» подчеркивают, что данный способ может дать немного энергии. Но вся группа (как известных, так и не публичных) работ в области атмосферной электроэнергетики может оказаться куда более значительной по результатам. Постановка на службу человечеству энергии молний и атмосферного электричества вообще способна надолго и без гигантских затрат решить энергетический вопрос, как минимум дав один из основных источников электроэнергии недалекого будущего. Тесла говорил, что энергия окружает нас повсюду, и вопрос состоит лишь в том, как ее взять. Умение вызывать грозовые разряды и аккумулировать полученное электричество откроет новые возможности экономического развития мира, вновь сделав энергию дешёвой. Накапливаемая в атмосфере планеты энергия обладает колоссальным потенциалом.

В конце XIX — начале XX века Тесла попытался экспериментально получить доступ к «неиссякаемому источнику энергии неба». Работы в этой области шли совместно с исследованиями по беспроводной передаче электричества. Финансовые затруднения вынудили ученого свернуть работу, хотя он много лет безуспешно пытался найти поддержку своих исследований. Известным результатом его экспериментальной работы оказался вызов в Колорадо молнии, что привело к аварии на местной электростанции в результате возникновения короткого замыкания. В современных условиях при наличии государственной поддержки исследований по «приручению» атмосферного электричества такая технология способна оказаться чрезвычайно продуктивной, что в конечном итоге должно помочь технологическому преодолению энергетического кризиса.

Атмосферная электроэнергетика может в ближайшие десятилетия стать ведущим направлением в группе технологий, призванных обновить энергетику. Соответствующие работы сейчас активно ведутся в Массачусетском технологическом институте (Massachusetts Institute of Technology — MIT), есть также и российские разработки. Бесспорным является революционный характер исследований в области получения атмосферного электричества. При этом источник энергии зачастую оценивается как почти безграничный, а затраты по ее получению должны оказаться минимальными.

7.5 КОРТЭЖ — технология

Группой московских инженеров прорабатывается возможность производства электроэнергии на основе так называемой динамической сверхпроводимости. Эффект сверхпроводимости возникает при вращении металлического диска на высоких скоростях. Предполагается, что при вращении электроны диска концентрируются по периметру диска, что позволяет пропускать в этом месте очень большой ток. Сконцентрированные электроны образуют короткозамкнутый тороидальный электронный жгут (КОРТЭЖ). Благодаря этому жгуту ток отделяется от металла диска и не нагревает его, что и обеспечивает возможность пропускать электроток большой величины. Большой ток, в свою очередь, позволяет получать сверхсильное магнитное поле, которое может использоваться для генерации электроэнергии.

По данной технологии проведено большое количество опытов на экспериментальной установке, отработаны основные способы использования эффекта электронного жгута в качестве средства генерации энергии. Осталось проверить работоспособность технологии на полупромышленном образце. Остановка на данной фазе связана с финансовыми проблемами этого проекта.

7.5. E-Cat и «холодный синтез»

Изобретение Андреа Росси автономного реактора E-Cat открывает эпоху революции в энергетике. Демонстрация готовой работающей установки дает основания надеяться на запуск серийного производства аппаратов.

В конце октября 2011 года группа итальянских ученых во главе с Андреа Росси представила и протестировала в Болонье революционный автономный реактор, источник «бесплатного тепла» — «катализатор энергии» (E-Cat). Принцип действия его строится на использовании в качестве топлива никеля и водорода, в процессе взаимодействия которых выделяется тепловая энергия и образуется медь. В основе функционирования устройства лежит низкоэнергетическая ядерная реакциям (LENR). При работе установки Росси мощностью в 1000 кВт в течении шести месяцев будет расходоваться только 10 кг никеля и 18 кг водорода. Создатели подчеркивают: реактор обеспечивает выработку абсолютно чистой энергии, количество которой не ограничено. Ее производство возможно в промышленных масштабах, а сами установки планируется предоставлять в аренду.

Выпуск генераторов Росси, вероятно, начнется в США. Предполагается, что цена «домашнего» E-Cat составит 400-500 долларов, что не должно помешать изобретению окупится в ходе всего одного года. Перезарядка генераторов и их техническое обслуживание не будет дорогим. В отличие от автономных генераторов для промышленности, экономичные «домашние» агрегаты нельзя будет перестроить для применения в индустрии . Интерес в мире к работе итальянского ученого все более возрастает.

Длительное время мировая экономика обходилась без инноваций в энергетике. Прогресс в информационной сфере 1970-2000-х годов соединялся с застоем в области энергетики. Так называемые «альтернативные источники» не создавали реальной замены сжиганию углеводородного топлива. Биотопливо, ветровые и солнечные генераторы не ставили под удар старую энергетику. Разработки революционных технологий в энергетике, для получения атмосферного электричества или экономичной автономной генерации, блокировались правительствами и корпорациями. Появление реактора Росси пробивает брешь в обороне консерваторов. В ближайшие годы появятся и другие изобретения, радикально снижающие себестоимость энергии.

Возобновляемые источники энергии (ВИЭ) с каждым годом становятся все более заметными в мировой энергетике. В США и странах Евросоюза доля ВИЭ в общем объеме производства в 2010 году составила 11% и 9,6%, соответственно. И по прогнозам к 2020 году она вплотную приблизится к 25%. При этом количество энергии, вырабатываемой ВИО, возрастет в странах Евросоюза в 3,8 раза, а в США - в 22,5 раза.

Развитие возобновляемых источников энергии в России находится на ранних этапах. В 2010 году доля возобновляемой энергетики в общем объеме производства составила 0,9% с установленной мощностью в 2,1 ГВт. К 2020 году доля ВИЭ возрастет до 4,5% с установленной мощностью в 25 ГВт.

Несмотря на серьезные проблемы, ограничивающие рост использования ВИЭ в России, существуют существенные предпосылки для их активного развития.

Использование возобновляемых источников энергии играет важную роль в развитии распределенной энергетики .

Распределенная энергетика является приоритетной сферой экономически эффективного практического использования ВИЭ в России. В этой сфере установки на ВИЭ уже сегодня могут успешно конкурировать с традиционными энергоустановками.

Потенциальные масштабы возможного эффективного использования ВИЭ в сфере распределенной генерации уже сегодня измеряются гигаватами. Наряду с законодательной и финансовой поддержкой развития ВИЭ в централизованной энергетике, государственная политика должна учитывать и стимулировать развитие ВИЭ в регионах в сфере распределенной энергетики.

Ключевые предпосылки развития распределенной энергетики с использованием ВИЭ:

  • 2/3 территории страны расположены вне сетей централизованного энергоснабжения: население около 20 млн чел., районы с наиболее высокими ценами и тарифами на топливо и энергию (более 25 руб./
  • кВтч);
  • Более 50% регионов страны энергодефицитны: завоз топлива, импорт электроэнергии – задача повышения региональной энергетической безопасности;
  • Газифицировано около 50% населенных пунктов, а в сельской местности - менее 35%.

Рассмотрим различные технологии возобновляемой энергетики.

Среди основных проблем солнечной энергетики можно выделить непостоянность и непредсказуемость основного источника энергии, зависимость от погодных и климатических условий, и обусловленная этим необходимость в накопителях энергии или дополнительных источниках энергии. Существенными недостатками являются высокая стоимость фотоэлектрических систем (ФЭС) с учетом необходимости в накопителях и обратных преобразователях переменного тока (до 50% от общей стоимости системы), сравнительно низкий КПД (от 4-5% до 20% для традиционных фотоэлектрических модулей (ФЭМ), и до 40% для концентрирующих ФЭМ) и низкая энергоемкость (~8-12 м2/кВт), вследствие чего под ФЭС требуются большие территории (Таблица 1).

Наиболее перспективными из перечисленных выше технологий являются:

  • Усовершенствованные неорганические тонкопленочные ФЭМ - Сферические ФЭМ на основе селенида меди-индия (CIS) и тонкопленочные поликристаллические кремниевые ФЭМ;
  • Органические ФЭМ (в том числе фотосенсибилизированные красителем ФЭМ на основе органических полимеров);
  • Термо-фотоэлектрические (TPV) ячейки с узкой запрещенной зоной (low gap-band).

Основные исследования в области развития фотоэлектрических технологий направлены на снижение себестоимости фотоэлектрических модулей за счет:

  • Повышения КПД фотоэлектрических модулей I-го и II-го поколения:
  • Снижения потребления материалов – использования пленочных ФЭМ;
  • Повышения энергоемкости – уменьшения поверхности ФЭМ;
  • Использования органических материалов взамен дефицитного сырья (такого как серебро, индий, теллур, свинец и кадмий);
  • Снижения стоимости и сроков окупаемости ФЭМ (Рисунок 1);
  • Использования более тонких и эффективных фотоэлектрических пластин;
  • Использования поликремневых заменителей (например, металлургического кремния).

Ветроэнергетика

Ветроэнергетика является одним из наиболее популярных и быстро развивающихся направлений альтернативной энергетики. Тем не менее, её распространение так же ограничивается непостоянностью ветра, как источника энергии, нарушением эстетического пейзажа ввиду установки огромных 100-метровых ветровых мельниц и сложностями с подключением к существующим сетям ввиду отдаленности наиболее благоприятных территорий для установки ветрогенераторов от существующей инфраструктуры. Стоимость ветряной турбины составляет около 80% от общей стоимости ветрогенератора, и поэтому основные усилия по снижению себестоимости ветряной энергии направлены на снижение расходов на производство турбин.

Среди основных направлений развития технологий в ветроэнергетике выделяются следующие:

Увеличение генерирующего потенциала:

  • Увеличение размеров турбин (см. рис.);
  • Увеличение высоты турбинных башен;
  • Использование оффшорных ветров и ветров на больших высотах;

Улучшение материалов:

  • Снижение зависимости башенных конструкций от стальных элементов;
  • Снижение веса пропеллеров (использование углеродных волокон и высокоинтенсивного углепластика);

Улучшение системы привода (редуктор, генератор, электроника) :

  • Развитие технологии сверхпроводников для более легких и эффективных электрогенераторов;
  • Использование постоянных электромагнитов в электрогенераторах.

Среди новых перспективных разработок выделяются:

Летающие ветряные турбины:

Makani Airborne Wind Turbine - на 90% легче традиционных турбин, запускается с использованием электрического двигателя, способна генерировать электричество на низких скоростях ветра;

Altaeros Airborne Wind Turbine - использует наполненную гелием оболочку для подъема на большие высоты;

Magenn Air Rotor System (M.A.R.S.) - MARS улавливает энергию ветра на высоте от 200 до 300 метров, а также струйные потоки воздуха, возникающие практически на любой высоте;

Генерация на ветрах низких скоростей

Wind Harvester - новая модель ветрогенератора основывается на возвратно-поступательном движении с использованием горизонтальных аэродинамических поверхностей;

Ветряная линза

Ветряная линза (Япония, университет Кюсю) - направленное внутрь изогнутое кольцо, располагающееся по периметру окружности, описываемой лопастями турбины при вращении. Увеличивает мощность ветряной турбины втрое при одновременном уменьшении уровня шума, имеет наибольший потенциал использования в открытом море;

Ветряные турбины с вертикальной осью

Windspire - вертикальная турбина высотой около 10 метров и шириной

около полутора метров, применима к использованию в городских

условиях (Рисунок 4).

Наиболее перспективными технологиями в ветроэнергетике станут те, что

позволят снизить зависимость их эффективности от размеров турбин,

как, например, Wind Harvester или Windspire .


Makani Airborne Wind Turbine


Altaeros Airborne Wind Turbine

Биоэнергетика

Несмотря на высокое распространение производства тепловой и электрической энергии из биомасс, технология выработки энергии из них имеет ряд проблем:

  • Необходимость земельных и водных ресурсов для выращивания, конкурирует с производством пищевых продуктов;
  • Вредные выбросы при сжигании (NOx, сажа, зола, CO, CO2);
  • Сезонный характер роста некоторых культур;
  • Проблемы масштабирования генерирующих мощностей.

Наиболее перспективные направления развития технологий в биоэнергетике:

  • Совместное сжигание смесей биомассы с традиционными видами топлива (наиболее дешевая технология на данный момент - Рисунок 6);
  • Использование новых видов топлива из биомасс, включая различные бытовые и промышленные отходы;
  • Переоборудование существующих генерирующих мощностей на углеводородном топливе под использование биомасс;
  • Повышение теплоотдачи пеллет биомассы за счет сушки;
  • Интегрированная газификация биомасс с топливными ячейками.


В приливной и волновойэнергетике используетсякинетическая энергия воды.Основное отличие состоитв том, что в приливнойэнергетике используетсяэнергия морских приливови отливов за счет перепадав уровне воды, тогда как вволновой энергетикеиспользуются водныетечения и колебания волн.

Основные барьеры на пути распространения данного вида альтернативной энергетики

  • Высокие капитальные затраты на строительство (от 2,5 до 7 млн. евро за 1 МВт установленной мощности);
  • Географическая привязка к береговой линии и удаленность от существующих электрических сетей;
  • Негативное влияние на окружающую среду;
  • Зависимость от природных явлений;
  • Дороговизна и сложность техобслуживания;
  • Быстрый износ генерирующего оборудования под воздействием воды.

Среди общих направлений технологических исследований в области приливной энергетики выделяются следующие:

Усовершенствование приливных плотин:

  • Повышение эффективности генераторов на приливных плотинах;
  • Улучшение антикоррозийных свойств материалов;

Использование приливного течения:

  • Генерация электроэнергии непосредственно от течения воды во время
  • приливов (а не от перепада в уровне воды между приливами и
  • отливами);
  • Исследования в области различных видов турбин (горизонтальных и
  • вертикальных) для преобразования энергии приливного течения;
  • Исследований новых, не турбинных технологий;

Модернизация фиксаторов преобразователей приливного течения:

Якорная стоянка на гравитационном фундаменте или забивных сваях, плавающие платформы, закрепленные с помощью причальных линий.

Наиболее перспективные новые технологии и разработки в области приливной энергетики:

  • Использование мостов в качестве приливных электростанций, например, проект компании Bluenergy (см.рис.);
  • Колеблющееся подводное крыло (применяет вместо вращающихся элементов плавники (крылья), которые приводятся в движение течением);
  • Системы с использованием трубки Вентури (например, Rotech Tidal Turbine – двусторонняя турбина с горизонтальной осью, расположенная внутри симметричной конической трубки Вентури, преобразует энергию океанического течения в электроэнергию);
  • Магнитогидродинамические системы (MHD) (Концептуальная технология, использующая криогенно охлажденную сверхпроводящую электромагнитную катушку, размещенную на морском дне, где проходящие приливные волны используются для выработки энергии).

В волновой энергетике большинство исследуемых технологий все еще находится на стадии разработки или экспериментальных испытаний:

  • Усовершенствование технологий осциллирующих водяных колонн (OWC) (например, снижение колебаний вырабатываемой электроэнергии за счет применения маховиков и силовой электроники);
  • Развитие технологии уровневых уловителей (point absorber) на плавучих буях (в т.ч. применение различных способов отбора мощности (механических, гидравлических, электромагнитных));
  • Усовершенствование технологий переливных турбинных генераторов типа WaveDragon (Повышение КПД и снижение колебаний вырабатываемой электроэнергии).

Среди новых и уже испытуемых технологий можно выделить следующие наиболее перспективные проекты:

  • Волновые аттенюаторы (например, Pelamis Wave Energy – преобразователь волновой энергии в виде змеевидных устройств, наполовину погруженных в воду - см. рис.)
  • Волновые генераторы на принципе обратного маятника (Inverted Pendulum, например, bioWAVE™, в котором ряд поплавков или лопастей взаимодействует с колеблющейся морской поверхностью (потенциальной энергией) и подводными течениями (кинетической энергией), конвертируя энергию волн в электричество специальным конвертирующим модулем);
  • Генераторы с жидким/газообразным рабочим телом (включая SDE Wave Power, использующий гидродинамическую энергию волн для приведения в движение пистонов в гидравлическом моторе или Archimedes Wave Swing-III ряд устройств из множества уловителей волновых колебаний на гибкой мембране, конвертирующих энергию волн в пневматическую энергию посредством сжатия воздуха в каждом устройств).


error: Контент защищен !!