Митохондрии. Как митохондрии влияют на здоровье Почему митохондрии называют

  • Митохондрии – это крошечные включения в клетках, которые, как первоначально считалось, были унаследованы от бактерий. В большинстве клеток их насчитывается до нескольких тысяч, что составляет от 15 до 50 процентов от объема клетки. Именно они являются источником более 90 процентов энергии вашего организма.
  • Ваши митохондрии обладают огромным влиянием на здоровье, особенно на рак, поэтому оптимизация митохондриального метаболизма может лежать в основе эффективного лечения рака

Размер текста:

От д-ра Меркола

Митохондрии: вы можете не знать, что это такое, но они жизненно важны для вашего здоровья. Доктор наук Ронда Патрик – биомедик, которая изучила взаимодействие митохондриального метаболизма, аномального метаболизма и рака.

Часть ее работы предполагает выявление ранних биомаркеров заболевания. Например, повреждение ДНК – это ранний биомаркер рака. Затем она пытается определить, какие питательные микроэлементы помогают восстановить это повреждение ДНК.

Она также исследовала митохондриальную функцию и метаболизм, которыми и я увлекаюсь с недавних пор. Если, прослушав это интервью, вы захотите узнать об этом побольше, рекомендую начать с книги д-ра Ли Ноу «Жизнь - эпическая история наших митохондрий».

Митохондрии обладают огромным влиянием на здоровье, особенно на рак, и я начинаю верить, что оптимизация митохондриального метаболизма может лежать в основе эффективного лечения рака.

Важность оптимизации митохондриального метаболизма

Митохондрии представляют собой крошечные органеллы, которые, как первоначально считалось, мы унаследовали от бактерий. В красных кровяных тельцах и клетках кожи их почти нет, зато в зародышевых клетках их по 100 000, но в большинстве клеток их от одной до 2 000. Они – главный источник энергии для вашего организма.

Чтобы органы могли функционировать должным образом, им нужна энергия, и эта энергия вырабатывается митохондриями.

Поскольку митохондриальная функция лежит в основе всего, что происходит в организме, то оптимизация митохондриальной функции, и предотвращение нарушения функции митохондрий путем получения всех необходимых питательных веществ и прекурсоров, необходимых митохондриям, чрезвычайно важна для здоровья и профилактики заболеваний.

Так, одной из универсальных характеристик раковых клеток является серьезное нарушение функции митохондрий, при котором радикально снижено количество функциональных митохондрий.

Д-р Отто Варбург был врачом с научной степенью по химии и тесно дружил с Альбертом Эйнштейном. Большинство экспертов признают Варбурга величайшим биохимиком 20-го века.

В 1931 году он получил Нобелевскую премию – он открыл, что в качестве источника производства энергии раковые клетки используют глюкозу. Это назвали «эффектом Варбурга» но, к сожалению, это явление и по сей день игнорируется почти всеми.

Я убежден, что кетогенная диета, которая радикально улучшает здоровье митохондрий, может помочь при большинстве видов рака, особенно в сочетании с поглотителем продуктов брожения глюкозы, таким как 3-бромопируват.

Как митохондрии вырабатывают энергию

Чтобы производить энергию, митохондриям нужен кислород из воздуха, которым вы дышите, и жира и глюкоза из пищи, которую вы едите.

Эти два процесса - дыхания и приема пищи – соединяются друг с другом в процессе, который называется окислительное фосфорилирование. Именно он используется митохондриями для производства энергии в виде АТФ.

Митохондрии обладают рядом электронных транспортных цепочек, по которым они передают электроны из восстановленной формы съедаемой вами пищи, чтобы объединить их с кислородом из воздуха, которым вы дышите, и в конечном счете, образовать воду.

Этот процесс приводит протоны через митохондриальную мембрану, подзаряжая АТФ (аденозинтрифосфат) из АДФ (аденозина дифосфат). АТФ переносит энергию по всему организму

Но в ходе этого процесса образуются побочные продукты, такие как активные формы кислорода (АФК), которые повреждают клетки и митохондриальную ДНК, перенося их затем в ДНК ядра.

Таким образом, происходит компромисс. Вырабатывая энергию, организм стареет из-за возникающих в процессе разрушительных аспектов АФК. Скорость старения организма в значительной степени зависит от того, насколько хорошо функционируют митохондрии, и объема повреждений, который можно компенсировать с помощью оптимизации диеты.

Роль митохондрий при раковых заболеваниях

Когда появляются раковые клетки, активные формы кислорода, полученные в качестве побочного продукта производства АТФ, посылают сигнал, запускающий процесс клеточного самоубийства, также известный как апоптоз.

Поскольку клетки рака образуются каждый день, это хорошо. Убивая поврежденные клетки, организм избавляется от них и заменяет их здоровыми.

Раковые клетки, однако, устойчивы к этому протоколу самоубийства – у них против него встроена защита, как объяснил д-р Варбург и, впоследствии, Томас Сейфрид, который глубоко исследовал рак как заболевание обмена веществ.

Как поясняет Патрик:

«Одним из механизмов действия химиотерапевтических препаратов является образование активных форм кислорода. Они создают повреждения, и этого достаточно, чтобы подтолкнуть раковую клетку к смерти.

Думаю, причина этого в том, что раковая клетка, которая не использует свои митохондрии, то есть, больше не производит активные формы кислорода, и вдруг вы ее заставляете пользоваться митохондриями, и получается всплеск активных форм кислорода (ведь именно это делают митохондрии), и - бум, смерть, потому что раковая клетка уже готова к этой смерти. Она готова умереть».

Почему полезно не есть по вечерам

Уже довольно долгое время я – поклонник чередующегося голодания по целому ряду причин, разумеется, из соображений долголетия и здоровья, а также потому, что оно, как представляется, обеспечивает мощную профилактику рака и благотворное влияние, как от лечения. А механизм этого связан с эффектом, который голодание оказывает на митохондрии.

Как уже упоминалось, основной побочный эффект переноса электронов, в котором участвуют митохондрии, состоит в том, что некоторые утекают из цепи переноса электронов и вступают в реакцию с кислородом, образуя свободные радикалы супероксида.

Анион супероксида (результат уменьшения кислорода на один электрон), является предшественником большинства активных форм кислорода и медиатором окислительных цепных реакций. Свободные радикалы кислорода атакуют липиды клеточных мембран, белковых рецепторов, ферментов и ДНК, что может преждевременно убивать митохондрии.

Некоторые свободные радикалы, вообще-то, даже полезные, необходимые организму для регулирования клеточных функций, но при избыточном образовании свободных радикалов возникают проблемы. К сожалению, именно поэтому у большинства населения развивается большинство заболеваний, особенно рак. Решить эту проблему можно двумя способами:

  • Увеличить антиоксиданты
  • Уменьшить выработку митохондриальных свободных радикалов

По моему мнению, одной из наиболее эффективных стратегий снижения митохондриальных свободных радикалов является ограничение количества топлива, которым вы заправляете организм. Это совсем непротиворечащее положение, ведь ограничение калорий последовательно демонстрирует много терапевтических преимуществ. Это одна из причин эффективности чередующегося голодания, поскольку оно ограничивает период времени, в который принимается пища, что автоматически уменьшает количество калорий.

Это особенно эффективно, если не есть за несколько часов до сна, потому что это – самое метаболически низкое состояние.

Возможно, неспециалистам все это покажется слишком сложным, но следует понять одно: поскольку во время сна организм использует наименьшее количество калорий, то следует избегать еды перед сном, ведь избыточное количество топлива в это время приведет к образованию избыточного количества свободных радикалов, которые разрушают ткани, ускоряют старение и способствуют возникновению хронических заболеваний.

Как еще голодание помогает здоровью функции митохондрий

Патрик также отмечает, что частично механизм эффективности голодания объясняется тем, что энергию организм вынужден получать из липидов и запасов жира, а это означает, что клетки вынуждены использовать свои митохондрии.

Митохондрии – это единственный механизм, с помощью которых организм может создавать энергию из жира. Таким образом, голодание помогает активировать митохондрии.

Она также считает, что это играет огромную роль в механизме, с помощью которого чередующееся голодание и кетогенная диета убивают раковые клетки, и объясняет, почему некоторые препараты, активирующие митохондрии, способны убивать раковые клетки. Опять же, это потому, что образуется всплеск активных форм кислорода, ущерб от которых и решает исход дела, вызывая гибель раковых клеток.

Питание митохондрий

С точки зрения питания, Патрик подчеркивает значение следующих питательных веществ и важных сопутствующих факторов, необходимых для правильного функционирования митохондриальных ферментов:

  1. Коэнзим Q10 или убихинол (восстановленная форма)
  2. L-карнитин, который переносит жирные кислоты в митохондрии
  3. D-рибоза, которая является сырьем для молекул АТФ
  4. Магний
  5. Все витамины группы В, в том числе рибофлавин, тиамин и B6
  6. Альфа-липоевая кислота (АЛК)

Как замечает Патрик:

«Я предпочитаю получать как можно больше питательных микроэлементов из цельных продуктов по целому ряду причин. Во-первых, они образуют между собой комплекс с волокнами, благодаря которому облегчается их всасывание.

Кроме того, в этом случае обеспечивается их правильное соотношение. Получить их с избытком не удастся. Соотношение именно такое, как нужно. Есть и другие компоненты, которые, вероятно, еще предстоит определить.

Нужно быть очень бдительными, следя за тем, чтобы есть широкий спектр [продуктов] и получать правильные питательные микроэлементы. Я думаю, по этой причине полезно принимать добавки с комплексом витаминов В.

По этой причине их принимаю я. Другая причина заключается в том, что с возрастом мы перестаем так же легко усваивать витамины группы В, в основном, из-за увеличивающейся жесткости клеточных мембран. Это изменяет способ, которым витамины группы В транспортируются в клетку. Они водорастворимые, поэтому не хранятся в жире. Ими невозможно отравиться. В крайнем случае, будете мочиться чуть больше. Но я уверена в том, что они очень полезны».

Сохранить молодость митохондрий помогут физические упражнения

Физические упражнения тоже способствуют митохондриальному здоровью, поскольку они заставляют митохондрии трудиться. Как упоминалось ранее, одним из побочных эффектов усиленной работы митохондрий является создание активных форм кислорода, выступающих в качестве сигнальных молекул.

Одна из функций, сигнализируемых ими, является образование большего количества митохондрий. Поэтому, когда вы тренируетесь, организм реагирует, создавая больше митохондрий, чтобы удовлетворять повышенные запросы в энергии.

Старение неизбежно. Но ваш биологический возраст может сильно отличаться от хронологического, причем митохондрии имеют много общего с биологическим старением. Патрик цитирует недавнее исследование, которое показывает, как люди могут биологически стареть очень разными темпами.

Исследователи измерили более десятка различных биомаркеров, таких как длина теломера, повреждение ДНК, холестерин ЛПНП, метаболизм глюкозы и чувствительность к инсулину, в трех точках жизни людей: в возрасте 22, 32 и 38 лет.

«Мы обнаружили, что кто-то в возрасте 38 лет биологически мог выглядеть на 10 лет моложе или старше, судя по биологическим маркерам. Несмотря на одинаковый возраст, биологическое старение происходит совершенно разными темпами.

Интересно, что когда этих людей сфотографировали и показали их фотографии прохожим с просьбой угадать хронологический возраст изображенных людей, то люди угадывали биологический, а не хронологической возраст».

Таким образом, независимо от фактического возраста, на сколько лет вы выглядите, соответствует вашим биологическим биомаркерам, которые в значительной степени обусловлены здоровьем митохондрий. Поэтому, хотя старения и не избежать, вы в значительной степени можете управлять тем, как вы стареете, а это, согласитесь, дает очень много возможностей. И одним из ключевых факторов является поддержание митохондрий в хорошем рабочем состоянии.

Как считает Патрик, «молодость» - это не столько хронологический возраст, сколько то, на какой возраст вы себя чувствуете, и насколько хорошо работает ваш организм:

«Я хочу знать, как оптимизировать свою мыслительную деятельность и свои спортивные результаты. Я хочу продлить молодость. Я хочу дожить до 90. И когда я доживу, хочу заниматься серфингом в Сан-Диего точно так же, как и в свои 20. Я хотела бы угасать не так быстро, как некоторые люди. Мне нравится оттягивать это угасание и продлевать молодость столько, сколько получится, чтобы я как можно дальше радовалась жизни».

Митохондриальные заболевания — неоднородная группа наследственных заболеваний, которые вызваны структурными, генетическими или биохимическими дефектами митохондрий, приводящих к нарушениям энергетических функций в клетках эукариотических организмов. У человека при митохондриальных заболеваниях в первую очередь поражается мышечная и нервная система.

МКБ-9 277.87
MeSH D028361
DiseasesDB 28840

Общие сведения

Митохондриальные заболевания как отдельный тип патологий выделены в конце ХХ века после выявления мутации генов, которые ответственны за синтез митохондриальных белков.

Открытые в 1960-х годах мутации митохондриальной ДНК и вызванные этими мутациями болезни более изучены, чем заболевания, вызванные нарушениями ядерно-митохондриальных взаимодействий (мутации ядерной ДНК).

По имеющимся на сегодняшний день данным не менее 50 известных медицине заболеваний связано с митохондриальными нарушениями. Распространенность этих заболеваний составляет 1:5000.

Виды

Митохондрии являются уникальными клеточными структурами, которые обладают собственным ДНК.

Согласно мнению многих исследователей, митохондрии – потомки архебактерий, превратившиеся в эндосимбионтов (микроорганизмы, которые живут в организме «хозяина» и приносят ему пользу). В результате внедрения в эукариотические клетки они постепенно утратили или передали ядру эукариотического хозяина большую часть генома, и это учитывается при классификации. Также принимается во внимание и участие дефектного белка в биохимических реакциях окислительного фосфорилирования, которое позволяет запасать энергию в виде АТФ в митохондриях.

Единой общепринятой классификации не существует.

Обобщенная современная классификация митохондриальных заболеваний выделяет:

  • Заболевания, которые возникают при мутациях митохондриальной ДНК. Дефекты могут быть вызваны точечными мутациями белков, тРНК или рРНК (обычно наследуются по материнской линии), или структурными перестановками – спорадическими (нерегулярными) дупликациями и делециями. Это первичные митохондриальные заболевания, к которым относятся наследственные ярко выраженные синдромы — синдром Кернса — Сейра, синдром Лебера, синдром Пирсона, синдром NAPR, синдром MERRF и др.
  • Заболевания, которые вызваны дефектами ядерной ДНК. Ядерные мутации могут нарушать функции митохондрий – окислительное фосфолирование, работу электронтранспортной цепи, утилизацию или транспорт субстратов. Также мутации ядерной ДНК вызывают дефекты ферментов, которые необходимы для обеспечения циклического биохимического процесса — цикла Кребса, являющегося ключевым этапом дыхания всех использующих кислород клеток и центром пересечения в организме метаболических путей. К данной группе относят гастроинтестинальное митохондриальное заболевание, синдром Люфта, атаксию Фридриха, синдром Альперса, болезни соединительной ткани, диабет и др.
  • Заболевания, которые возникают в результате нарушений в ядерной ДНК и вызванных этими нарушениями вторичных изменений в митохондриальной ДНК. Вторичными дефектами являются тканеспецифические делеции или дупликации митохондриальной ДНК и уменьшение количества копий митохондриальной ДНК или их отсутствие в тканях. В данную группу входят печеночная недостаточность, синдром Де Тони-Дебре-Фанкони и др.

Причины развития

Митохондриальные заболевания вызываются дефектами находящихся в клеточной цитоплазме органелл — митохондрий. Основной функцией этих органелл является выработка энергии из поступающих в цитоплазму продуктов клеточного обмена веществ, которая происходит благодаря участию около 80 ферментов. Выделяющаяся энергия запасается в виде молекул АТФ, а затем преобразуется в механическую или биоэлектрическую энергию и т.д.

Причины митохондриальных заболеваний – нарушение выработки и аккумуляции энергии из-за дефекта одного из ферментов. В первую очередь при хроническом дефиците энергии страдают самые энергозависимые органы и ткани – ЦНС, сердечная мышца и скелетные мышцы, печень, почки и эндокринные железы. Хронический дефицит энергии вызывает патологические изменения в данных органах и провоцирует развитие митохондриальных заболеваний.

Этиология митохондриальных заболеваний имеет свою специфику – большинство мутаций происходит в генах митохондрий, поскольку в этих органеллах интенсивно протекают окислительно-восстановительные процессы и образуются повреждающие ДНК свободные радикалы. У митохондриальной ДНК механизмы восстановления повреждений несовершенны, так как ее не защищают белки-гистоны. В результате дефектные гены накапливаются быстрее в 10-20 раз, чем в ядерной ДНК.

Мутировавшие гены передаются при делении митохондрий, поэтому даже в одной клетке находятся органеллы с разным вариантом генома (гетероплазмия). При мутации митохондриального гена у человека наблюдается смесь мутантной и нормальной ДНК в любом соотношении, поэтому даже при наличии одинаковой мутации митохондриальные заболевания у людей выражены в разной степени. Наличие 10% дефектных митохондрий не оказывает патологического влияния.

Мутация может длительное время не проявляться, так как нормальные митохондрии компенсируют на начальном этапе недостаточность функции дефектных митохондрий. Со временем дефектные органеллы накапливаются, и проявляются патологические признаки заболевания. При раннем манифесте течение болезни более тяжелое, прогноз может быть негативным.

Митохондриальные гены передаются только от матери, так как содержащая эти органеллы цитоплазма присутствует в яйцеклетке и практически отсутствует в сперматозоидах.

Митохондриальные заболевания, которые вызваны дефектами ядерной ДНК, передаются благодаря аутосомно-рецессивному, аутосомно-доминантному или Х-сцепленному типу наследования.

Патогенез

Геном митохондрий отличается от генетического кода ядра и больше напоминает код бактерий. У человека геном митохондрий представлен копиями небольшой кольцевой молекулы ДНК (их число колеблется от 1 до 8). Каждая митохондриальная хромосома кодирует:

  • 13 белков, которые отвечают за синтез АТФ;
  • рРНК и тРНК, которые участвуют в происходящем в митохондриях синтезе белка.

Около 70 генов белков митохондрий кодируются генами ядерной ДНК, благодаря чему осуществляется централизованная регуляция функций митохондрий.

Патогенез митохондриальных заболеваний связан с процессами, которые происходят в митохондриях:

  • С транспортом субстратов (органической кетокислоты пирувата, которая является конечным продуктом метаболизма глюкозы, и жирных кислот). Происходит под воздействием карнитин-пальмитоил-трансферазы и карнитина.
  • С окислением субстратов, которое происходит под влиянием трех ферментов (пируватдегидрогеназы, липоат-ацетилтрансферазы и липоамид-дегидрогеназы). В результате процесса окисления образуется ацетил-КоА, участвующий в цикле Кребса.
  • С циклом трикарбоновых кислот (цикл Кребса), который не только занимает центральное место в энергетическом обмене, но и поставляет промежуточные соединения для синтеза аминокислот, углеводов и других соединений. Половина стадий цикла является окислительными процессами, в результате которых выделяется энергия. Эта энергия аккумулируется в виде восстановленных коферментов (молекул небелковой природы).
  • С окислительным фосфорилированием. В результате полного разложения пирувата в цикле Кребса образуются коферменты NAD и FAD, участвующие в переносе электронов в дыхательную цепь переноса электронов (ЭТЦ). ЭТЦ контролируется митохондриальным и ядерным геномом и осуществляет транспорт электронов при помощи четырех мультиферментных комплексов. Пятый мультиферментный комплекс (АТФ-синтаза) катализирует синтез АТФ.

Патология может возникать как при мутациях генов ядерной ДНК, так и при мутациях генов митохондрий.

Симптомы

Митохондриальные заболевания отличаются значительным разнообразием симптомов, поскольку в патологический процесс вовлекаются разные органы и системы.

Нервная и мышечная системы являются самыми энергозависимыми, поэтому от дефицита энергии они страдают в первую очередь.

К симптомам поражения мышечной системы относятся:

  • снижение или потеря возможности выполнять двигательные функции в связи со слабостью мышц (миопатический синдром);
  • гипотония;
  • боли и болезненные спазмы мышц (крампи).

Митохондриальные заболевания у детей проявляются в головной боли, рвоте и слабости мышц после физической нагрузки.

Поражение нервной системы проявляется в:

  • задержке психомоторного развития;
  • утрате приобретенных ранее навыков;
  • наличии судорог;
  • наличии периодического появления апноэ и ;
  • повторных коматозных состояниях и смещении кислотно-щелочного баланса организма (ацидоз);
  • нарушениях походки.

У подростков наблюдаются головные боли, периферические нейропатии (онемение, утрата чувствительности, паралич и др.), инсультоподобные эпизоды, патологические непроизвольные движения, головокружение.

Для митохондриальных заболеваний также характерны поражения органов чувств, которые проявляются в:

  • атрофии зрительных нервов;
  • птозе и наружной офтальмоплегии;
  • катаракте, помутнении роговицы, пигментной дегенерации сетчатки;
  • дефекте поля зрения, которое наблюдается у подростков;
  • снижении слуха или нейросенсорной глухоте.

Признаками митохондриальных заболеваний являются и поражения внутренних органов:

  • кардиомиопатия и блокады сердца;
  • патологическое увеличение печени, нарушения ее функций, печеночная недостаточность;
  • поражения проксимальных почечных канальцев, сопровождающиеся повышенным выведением глюкозы, аминокислот и фосфатов;
  • приступы рвоты, дисфункция поджелудочной железы, диарея, целиакоподобный синдром.

Наблюдается также макроцитарная анемия, при которой увеличен средний размер эритроцитов, и панцитопения, для которой характерно снижение количества всех видов клеток крови.

Поражение эндокринной системы сопровождается:

  • задержкой роста и нарушением полового развития;
  • гипогликемией и диабетом;
  • гипоталамо-гипофизарным синдромом с дефицитом СТГ;
  • дисфункцией щитовидной железы;
  • гипотиреозом, нарушением обмена фосфора и кальция и .

Диагностика

Диагностика митохондриальных заболеваний основывается на:

  • Изучении анамнеза. Поскольку все симптомы митохондриальных заболеваний не являются специфическими, диагноз предполагается при комбинации трех и более симптомов.
  • Физикальном обследовании, которое включает тесты на выносливость и силу.
  • Неврологическом обследовании, включающем проверку зрения, рефлексов, речи и познавательных способностей.
  • Специализированных пробах, которые включают наиболее информативный тест – мышечную биопсию, а также фосфорную магнитно-резонансную спектроскопию и др. неинвазивные методы.
  • КТ и МРТ, которые позволяют выявить признаки повреждения головного мозга.
  • ДНК-диагностике, которая позволяет выявить митохондриальные заболевания. Не описанные ранее мутации определяются методом прямого секвенирования мтДНК.

Лечение

Эффективное лечение митохондриальных заболеваний активно разрабатывается. Внимание уделяется:

  • Увеличению эффективности энергетического обмена при помощи тиамина, рибофлавина, никотинамида, коэнзима Q10 (показывает хороший результат при синдроме MELAS), витамина С, цитохрома С и т.д.
  • Профилактике повреждения мембран митохондрий свободными радикалами, для которой используются a-липоевая кислота и витамин Е (антиоксиданты), а также мембранопротекторы (цитиколин, метионин и др.).

Лечение также включает применение креатина моногидрата как альтернативного источника энергии, снижение уровня молочной кислоты и физические упражнения.

Митохондрия – не просто двухслойный мембранный пузырёк, а можно сказать, клетка внутри клетки, почти живое существо. Митохондрии, согласно теории американской исследовательницы Лины Маргулис, – потомки древних бактерий. На это указывает тот факт, что митохондриальный геном имеет много общего с альфа-пробактериями. На основе данных, полученных в процессе аминокислотного анализа белков, секвенирования генов и анализа метаболических процессов, предполагается, что эукариоты произошли в результате симбиотической ассоциации или слияния анаэробного архибактериального хозяина и альфа-пробактерии (подобной ныне существующим Рикеттсиям), которая развилась в митохондрион. Клетка-хозяин «предоставила» предкам митохондрий кров и защиту, а они отдавали клетке излишек энергии. В связи с этим митохондрии частично сохранили автономность (самоуправление). У митохондрии есть собственный геном (до 10 кольцевых хромосом), она способна размножаться делением. Митохондриальный генетический код несколько отличается от кода хромосом ядра. Есть в митохондриях собственный набор транспортных РНК и ферменты для копирования кольцевой ДНК. М итохондрии отличаются от других органелл тем, что имеют автономную систему биосинтеза белков-ферментов, участвующих в процессах окислительного фосфорилирования. Для работы митохондрий требуется около 700 различных белков, но только около 5% этих белков синтезируется в них самих (они закодированы в геноме органеллы). Остальные белки они импортируют из цитоплазмы клетки.

Митохондрии наследуются исключительно по материнской линии. Механизм быстрого обнаружения и устранения отцовской митохондрии в зиготе установил в 1999г американский биохимик Сутовски. Эту функцию выполняют протеиновые молекулы убиквитина, которые «помечают» белки, предназначенные для разборки на аминокислоты.

Рис. Схема строения митохондрии: 1-наружная мембрана; 2-внутренняя мембрана; 3-ферменты; 4-кольцевые молекулы ДНК; 5-кристы; 6-рибосомы. (Из кн. Э. Хадорн, Р. Венер «Общая зоология», 1989.)

Митохондриальная хромосома

Митохондриальная ДНК у млекопитающих представляет собой кольцевую молекулу, состоящую из 16569 пар нуклеотидов; в каждой митохондрии может быть 5-10 копий ДНК. Митохондриальная хромосома включает 37 генов: структурные гены, контролирующие синтез двух молекул рРНК, 22 варианта тРНК и 13 различных белков, включая некоторые из ферментов, участвующих в процессах окислительного фосфорилирования.Митохондриальный геном всех людей, кроме родственников по женской линии, различен. Это связано с тем, что в митохондриальных генах нет интронов, и отсутствуют системы репарации ДНК, вследствие этого мутации мтДНК возникают примерно в 10 раз чаще, чем в ядерных генах. Различия митохондриальной ДНК разных людей дают возможность использовать анализ этой ДНК для генетической идентификации личности и установления родства.

Митохондриальные болезни. В настоящее время в мире функционирует более десяти международных организаций по изучению митохондрий, а на базе Калифорнийского университета в Сан-Диего (США) проводятся различные научные встречи «Mitochondria». Это обусловлено тем, что в последнее время обнаружена обширная группа болезней, связанных с патологией митохондрии. Сегодня известно более 200 крупных делеций и дупликаций в митохондриальной ДНК, которые оказывают негативное влияние на функционирование этих важнейших органелл.Известно, что инактивация митохондриальных генов в результате мутаций служит причиной различных патологических состояний от наследственной слепоты и глухоты до диабета и старческого слабоумия. Некоторые дефекты митохондрий являются причиной врожденного бесплодия женщин. Все вызванные митохондриальными мутациями болезни передаются по материнской линии, как и сами митохондрии; их каждый человек получает только от своей матери. Есть основания считать, что по мере накопления мутаций мтДНК в соматических клетках индивидуума в них идет процесс разбалансирования, который является одной из основных причин старения организма.

Цитозоль (син. гиалоплазма, основное вещество цитоплазмы, матрикс) – (внутриклеточное пространство внутри клетки) один из важнейших клеточных компартментов (зона, пространство); вместе с цитоплазматическими органеллами образует цитоплазму. Цитозоль – место большей части реакций промежуточного обмена, синтеза белка на свободных рибосомах, синтеза жирных кислот. Являясь коллоидной системой, цитозоль обладает способностью изменять свое физико-химическое состояние (переходы гель←→золь). В состав цитозоля входит вода, белки, липиды, нуклеиновые кислоты, промежуточные продукты их обмена, а также ферменты и неорганические вещества.

Органелла (органоид) – специализированный для выполнения конкретной функции и метаболически активный элемент цитоплазмы. К органеллам относятся свободные рибосомы, гранулярную эндоплазматическую сеть (шероховатый эндоплазматический ретикулум), митохондрии, комплекс Гольджи, центриоли, окаймленные пузырьки, лизосомы, цитоскелет, протеасомы.

Что такое митохондрии? Если ответ на этот вопрос вызывает у вас затруднения, то наша статья как раз для вас. Мы рассмотрим особенности строения этих органелл во взаимосвязи с выполняемыми функциями.

Что такое органеллы

Но для начала давайте вспомним, что такое органеллы. Так называют постоянные клеточные структуры. Митохондрии, рибосомы, пластиды, лизосомы... Все это органеллы. Подобно самой клетке, каждая подобная структура имеет общий план строения. Органеллы состоят из поверхностного аппарата и внутреннего содержимого - матрикса. Каждую из них можно сравнить с органами живых существ. Органеллы также имеют свои характерные черты, обусловливающие их биологическую роль.

Классификация клеточных структур

Органеллы объединяют в группы по признаку строения их поверхностного аппарата. Различают одно-, дву- и немембранные постоянные клеточные структуры. К первой группе относятся лизосомы, комплекс Гольджи, эндоплазматический ретикулум, пероксисомы и различные виды вакуолей. Ядро, митохондрия и пластиды - двумембранные. А рибосомы, клеточный центр и органеллы движения полностью лишены поверхностного аппарата.

Теория симбиогенеза

Что такое митохондрии? Для эволюционного учения это не просто структуры клетки. Согласно симбиотической теории, митохондрии и хлоропласты являются результатом метаморфоз прокариот. Вполне возможно, что митохондрии произошли от аэробных бактерий, а пластиды - от фотосинтезирующих. Доказательством этой теории является тот факт, что данные структуры имеют собственный генетический аппарат, представленный кольцевой молекулой ДНК, двойную мембрану и рибосомы. Существует также предположение, что в дальнейшем от митохондрий произошли животные эукариотические клетки, а от хлоропластов - растительные.

Расположение в клетках

Митохондрии являются составляющей частью клеток преобладающей части растений, животных и грибов. Отсутствуют они только у анаэробных одноклеточных эукариот, обитающих в бескислородной среде.

Строение и биологическая роль митохондрий долгое время оставались загадкой. Впервые при помощи микроскопа их удалось увидеть Рудольфу Келликеру в 1850 году. В мышечных клетках ученый обнаружил многочисленные гранулы, которые на свету были похожи на пух. Понять, какова роль этих удивительных структур, стало возможно благодаря изобретению профессора Пенсильванского университета Бриттона Ченса. Он сконструировал прибор, который позволял видеть сквозь органеллы. Так была определена структура и доказана роль митохондрий в обеспечении энергией клеток и организма в целом.

Форма и размер митохондрий

Общий план строения

Рассмотрим, что такое митохондрии с точки зрения особенностей их строения. Это двумембранные органеллы. Причем наружная - гладкая, а внутренняя имеет выросты. Матрикс митохондрий представлен различными ферментами, рибосомами, мономерами органических веществ, ионами и скоплениями кольцевых молекул ДНК. Такой состав делает возможным протекание важнейших химических реакций: цикла трикарбоновых кислот, мочевины, окислительного фосфорилирования.

Значение кинетопласта

Мембрана митохондрии

Мембраны митохондрий не одинаковы по своему строению. Замкнутая наружная является гладкой. Она образована бислоем липидов с фрагментами белковых молекул. Его общая толщина составляет 7 нм. Данная структура выполняет функции отграничения от цитоплазмы, а также взаимосвязи органеллы с окружающей средой. Последняя возможна благодаря наличию белка порина, который формирует каналы. По ним посредством активного и пассивного транспорта передвигаются молекулы.

Химическую основу внутренней мембраны составляют белки. Она образует внутри органоида многочисленные складки - кристы. Эти структуры в значительной степени увеличивают активную поверхность органеллы. Главной особенностью строения внутренней мембраны является полная непроницаемость для протонов. В ней не образуются каналы для проникновения ионов извне. В отдельных местах наружная и внутренняя соприкасаются. Здесь расположен особый рецепторный белок. Это своеобразный проводник. С его помощью митохондриальные белки, которые закодированы в ядре, проникают внутрь органеллы. Между мембранами находится пространство, толщиной до 20 нм. В нем расположены различные виды белков, которые являются обязательными компонентами дыхательной цепи.

Функции митохондрий

Строение митохондрии напрямую взаимосвязано с выполняемыми функциями. Основная из них заключается в осуществлении синтеза аденозинтрифосфата (АТФ). Это макромолекула, которая случит основным переносчиком энергии в клетке. В ее состав входит азотистое основание аденин, моносахарид рибоза и три остатка фосфорной кислоты. Именно между последними элементами заключено основное количество энергии. При разрыве одной из них максимально ее может выделиться до 60 кДж. В целом прокариотическая клетка содержит 1 млрд молекул АТФ. Эти структуры постоянно находятся в работе: существование каждой из них в неизменном виде не продолжается больше одной минуты. Молекулы АТФ постоянно синтезируются и расщепляются, обеспечивая организм энергией в тот момент, когда это необходимо.

По этой причине митохондрии называют "энергетическими станциями". Именно в них происходит окисление органических веществ под действием ферментов. Энергия, которая при этом образуется, запасается и хранится в виде АТФ. К примеру, при окислении 1 г углеводов образуется 36 макромолекул этого вещества.

Строение митохондрии позволяет им выполнять еще одну функцию. Благодаря своей полуавтономности они являются дополнительным носителем наследственной информации. Ученые установили, что ДНК самих органелл не могут функционировать самостоятельно. Дело в том, что они не содержат всех необходимых для своей работы белков, поэтому заимствуют их в наследственном материале ядерного аппарата.

Итак, в нашей статье мы рассмотрели, что такое митохондрии. Это двумембранные клеточные структуры, в матриксе которых осуществляется ряд сложных химических процессов. Результатом работы митохондрий является синтез АТФ - соединение, которое обеспечивает организм необходимым количеством энергии.

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен - митохондрии.

Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?

Книга:

8. Почему митохондрии - это ключ к сложности

<<< Назад
Вперед >>>

В предыдущей главе мы обсуждали, почему бактерии остались маленькими и простыми, по крайней мере, с точки зрения морфологии. Причины этого связаны в основном с давлением отбора. На эукариотические клетки и на бактерии действуют разные факторы отбора, потому что бактерии, как правило, не едят друг друга. Их успех во многом зависит от скорости размножения. Она же, в свою очередь, в основном зависит от двух факторов: во-первых, копирование бактериального генома - самый медленный этап размножения бактерий, поэтому чем больше геном, тем медленнее идет репликация; и во-вторых, деление клетки - энергоемкий процесс, поэтому наименее энергетически эффективные бактерии размножаются медленнее. Бактерии с большими геномами всегда находятся в невыгодном положении относительно сотоварищей с меньшими геномами, потому что бактерии могут «меняться» генами путем их горизонтального переноса - подхватывать полезные гены, если они нужны, и выбрасывать их, если они мешают жить. Поэтому самые конкурентоспособные бактерии - это бактерии, не обремененные генетическим материалом.

Если две клетки имеют одинаковое число генов и одинаково эффективные системы производства энергии, то быстрее размножаться будет наименьшая из них. Это связано с тем, что бактерии производят энергию при помощи наружной клеточной мембраны и поглощают пищу через нее же. С увеличением размера площадь поверхности бактерий растет медленнее, чем внутренний объем, поэтому энергетическая эффективность падает. Бактерии большего размера менее энергетически эффективны и чаще всего проигрывают в конкуренции с более мелкими. Такой энергетический штраф за большой размер не дает бактериям перейти к фагоцитозу, так как для него нужен и большой размер и много энергии для изменения формы тела. Нет таких бактерий, которые бы занимались хищничеством в эукариотическом стиле, то есть ловили и поедали бы жертву. Видимо, эукариоты решили эту проблему за счет переноса производства энергии внутрь клетки.

Это дало им относительную независимость от площади поверхности и позволило в тысячи раз увеличиться в размерах, не теряя энергетической эффективности.

На первый взгляд, эта причина не тянет на коренное различие между бактериями и эукариотами. У некоторых бактерий есть весьма сложные внутренние мембранные системы, что в принципе освобождает их от ограничений, связанных с соотношением площади поверхности и объема, но такие бактерии все равно далеки от эукариот в плане размера и сложности. Почему? В этой главе мы обсудим возможный ответ, который звучит так: чтобы контролировать дыхание на большой площади внутренних мембран, митохондриям нужны гены. Все известные митохондрии сохранили контингент своих собственных генов. Эти гены весьма своеобразны, и митохондрии смогли сохранить их благодаря природе своих симбиотических отношений с клеткой-хозяином. Бактерии лишены этого преимущества. Манера избавляться от излишков не позволила им обзавестись правильным набором генов для управления процессом производства энергии, и именно это не дает им сравниться с эукариотами в размере и сложности.

Чтобы понять, почему митохондриальные гены так важны и почему бактерии не могут обзавестись правильным набором генов для себя лично, нам придется еще глубже рассмотреть тесную связь между клетками, вступившими в эукариотический симбиоз два миллиарда лет назад. Начнем с того места, где мы остановились в первой части книги. Там мы оставили химерного эукариота на этапе, когда у него уже были митохондрии, но еще не было ядра. Поскольку эукариотическая клетка - это по определению клетка с «настоящим» ядром, мы не можем с чистой совестью назвать нашу химеру эукариотом. Поэтому давайте подумаем, какие факторы отбора превратили это странное создание в эукариотическую клетку. Эти факторы - ключ не только к происхождению эукариотической клетки, но и к происхождению истинной сложности, ведь они объясняют, почему бактерии остались бактериями, а точнее, почему для возникновения сложных эукариот было недостаточно естественного отбора, а понадобился еще и симбиоз.

Вспомним, что ключевым моментом водородной гипотезы является перенос генов от симбионта к клетке-хозяину. Для этого не потребовалось никаких эволюционных новшеств, кроме тех, что уже были у клеток, вступивших в тесный симбиоз. Мы знаем, что гены переместились из митохондрий в ядро, потому что у современных митохондрий мало генов, а многие гены в ядре имеют митохондриальное происхождение (мы знаем это наверняка, так как они есть в митохондриях других видов, утративших другой набор генов). У всех видов митохондрии потеряли подавляющее большинство своих генов - вероятно, несколько тысяч. Сколько из них попали в ядро, а сколько просто потерялись - вопрос спорный, но, судя по всему, в ядро попали многие сотни генов.

Для тех, кто не знаком с особенностями организации ДНК, это может показаться невероятным: как так, гены митохондрий просто взяли и оказались в ядре? Простите, но это похоже на фокус с вытаскиванием кролика из шляпы. Как такое возможно? На самом деле такие скачки генов у бактерий - обычное дело. Мы уже говорили о горизонтальном переносе генов, о том, что бактерии между делом «подбирают» гены из окружающей среды. Под окружающей средой мы обычно понимает среду за пределами клетки, но подобрать гены прямо из клетки даже проще.

Предположим, что первые митохондрии могли делиться внутри клетки-хозяина. В наше время одна клетка содержит десятки или сотни митохондрий, и даже после двух миллиардов лет внутриклеточного существования они все еще делятся более или менее независимо. Поэтому нетрудно представить, что вначале клетка-хозяин имела две митохондрии или даже больше. Теперь представим, что одна из них погибла, например, из-за нехватки пищи. Ее гены оказались в цитоплазме клетки-хозяина. Некоторые из них потеряются, но часть окажется в ядре за счет обычного переноса генов. В принципе этот процесс мог повторяться всякий раз, когда какая-нибудь митохондрия погибала, и каждый раз клетка-хозяин получала еще немного генов.

Такая схема может показаться надуманной или слишком абстрактной, но это не так. Насколько быстрым и непрерывным может быть такой процесс в эволюционном плане, показали Джереми Тиммис и его коллеги из Аделаидского университета (Австралия) в статье, опубликованной в журнале Nature в 2003 г. Этих исследователей интересовали не митохондрии, а хлоропласты (органеллы, отвечающие за фотосинтез у растений), но во многих отношениях хлоропласты и митохондрии похожи: и те и другие являются полуавтономными органеллами, ответственными за производство энергии; и те и другие когда-то были свободноживущими бактериями и сохранили свой геном, хотя и маленький. Тиммис и коллеги обнаружили, что скорость переноса генов хлоропластов в ядро составляет примерно один перенос на каждые 16 тысяч семян табака Nicotiana tabacum. Может показаться, что это не так много, но одно растение табака производит до миллиона семян в год, то есть одно растение в каждом поколении образует более 60 семян, в которых по крайней мере один ген хлоропластов был перенесен в ядро.

Гены митохондрий переносятся в ядро сходным образом. Реальность такого переноса генов в природе подтверждается открытием дупликаций генов хлоропластов и митохондриальных генов в ядерных геномах многих видов - иными словами, один и тот же ген есть и в митохондрии или хлоропласте, и в ядре. Проект «Геном человека» показал, что у людей произошло по меньшей мере 354 отдельных, независимых переноса митохондриальной ДНК в ядро. Такие последовательности ДНК называются ядерно-митохондриальными последовательностями (numt ). Ими представлен (по кусочкам) весь митохондриальный геном; некоторые кусочки многократно повторяются, а некоторые нет. У приматов и других млекопитающих эти последовательности регулярно переносились в ядро на протяжении последних 58 миллионов лет, и есть основания полагать, что этот процесс начался гораздо раньше. Поскольку ДНК в митохондриях эволюционирует быстрее, чем ДНК в ядре, последовательность «букв» в numts - это что-то вроде «капсулы времени», позволяющей судить о том, как выглядела митохондриальная ДНК в далеком прошлом. Надо заметить, что такие «чужеродные» последовательности могут изрядно сбить с толку; один раз их приняли за ДНК динозавров, а потом целой группе исследователей было очень стыдно.

Перенос генов продолжается по сей день и иногда попадает в поле зрения ученых. Например, в 2003 г. Клессон Тернер, тогда работавший в Национальном военно-медицинском центре имени Уолтера Рида (Вашингтон, США), и его коллеги показали, что спонтанный перенос митохондриальной ДНК в ядро вызвал у одного пациента редкое генетическое заболевание - синдром Паллистера-Холла. Однако какова роль таких генетических переносов в пантеоне наследственных заболеваний в целом, неизвестно.

<<< Назад
Вперед >>>


error: Контент защищен !!